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A result on colorings of open covers

A �nite coloring of A is a function f : A→ k for some k ∈ ω.
B ⊂ A is monochromatic if there is i ∈ k with f(b) = i for all
b ∈ B.

Theorem (Tsaban 2015)

Let (X, τ) be a topological space and f : τ t [τ ]2 → k be a �nite

coloring. Suppose that X is Menger and U is a point-in�nite open

cover of X without �nite subcovers. Then there are mutually

disjoint �nite subsets F0,F1, . . . of U whose unions Vn :=
⋃
Fn

have the following properties:

I
⋃

n∈H0
Vn 6=

⋃
n∈H1

Vn for any �nite non-empty H0, H1 ⊂ ω
such that maxH0 < minH1;

I f(
⋃

n∈H Vn) is the same for all �nite non-empty H ⊂ ω;
I f({

⋃
n∈H0

Vn,
⋃

n∈H1
Vn}) is the same for any �nite

non-empty H0, H1 ⊂ ω such that maxH0 < minH1;

I {Vn : n ∈ ω} covers X.
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Hindman's Theorem

For a sequence 〈ai : i ∈ ω〉 in a semigroup S, and F ∈ [S]<ω \ {∅},
F = {i0, . . . , ik} ⊂ ω with i0 < · · · < ik, we set

aF := ai1 + · · ·+ aik .

FS〈ai : i ∈ ω〉 := {aF : F ∈ [ω]<ω, F 6= ∅}.

Theorem (Hindman 1974)

For each �nite coloring of ω, there exists an increasing sequence

〈ai : i ∈ ω〉 of natural numbers such that the set FS〈ai : i ∈ ω〉 is
monochromatic. 2

Given p, q ∈ βS, we let A ∈ p+ q i�

{b ∈ S : ∃C ∈ q (b+ C ⊂ A)} ∈ p.
p+ q ∈ βS. This extends the addition from S to βS, with the

following continuity properties:

1. For every x ∈ S, the function q 7→ x+ q is continuous;

2. For every q ∈ βS, the function p 7→ p+ q is continuous.
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Fact. Any compact semigroup T satisfying item 2 above has an

idempotent element.

Proof. Zorn's Lemma provides us with a minimal closed

subsemigroup E of T , and minimality yields E = {e} for some

idempotent e ∈ T . Indeed, �x e ∈ E. As E + e is a closed

subsemigroup of E, we have E + e = E. Thus

T := {t ∈ E : t+ e = e} is a closed nonempty subsemigroup of E,

and hence T = E. So e+ e = e. 2

Proof of Hindman's Theorem by Galvin and Glazer.

Fix an idempotent element e ∈ βω. Let f be a k-coloring of ω.
Pick i ∈ k with A0 := f−1(i) ∈ e and set a−1 = 0.
By induction on n ∈ ω, pick an > an−1, an ∈ An, and An+1 ⊂ An

in e such that an +An+1 ⊂ An. Considering the sums from right

to left, we get that all sums ai0 + · · ·+ aim lie in Ai0 ⊂ A0, where

i0 < . . . < im. Thus FS〈ai : i ∈ ω〉 is monochromatic.
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The Milliken-Taylor Theorem

For F,H ∈ [ω]<ω \ {∅}, F < H means maxF < minH.

A sumsequence of 〈ai : i ∈ ω〉 ∈ Sω is a sequence 〈aFi : i ∈ ω〉, where
Fi ⊂ ω are nonempty �nite and Fi < Fi+1 for all i. The relation of
being a sumsequence is transitive.

〈bi : i ∈ ω〉 ∈ Sω is proper if bF 6= bH for all F < H in [ω]<ω \ ∅.
The sum graph of a proper sequence 〈bi : i ∈ ω〉 ∈ Sω is
{{bF , bH} : F < H, F,H ∈ [ω]<ω \ ∅} ⊂ [FS〈bi : i ∈ ω〉]2.
For a set X we consider [X]<ω with the operation ∪ which turns it into a
semigroup.

Theorem (Milliken 1975, Taylor 1976)

1. For each �nite coloring of the set [[ω]<ω]2, there are elements

F0 < F1 < · · · in [ω]<ω such that the sum graph of F0, F1, . . . is
monochromatic.

2. Let S be a semigroup, and 〈ai : i ∈ ω〉 ∈ Sω. If 〈ai : i ∈ ω〉 has a

proper sumsequence, then for each �nite coloring of [S]2, there is a

proper sumsequence of 〈ai : i ∈ ω〉 whose sum graph is

monochromatic.
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Item (2) is formally more general than item (1): {0}, {1}, {2}, is proper
in [ω]<ω.
Item (2) also follows from item (1): Wlog, 〈ai : i ∈ ω〉 is proper. Let
φ : [S]2 → k. De�ne ψ[[ω]<ω]2 → k by letting
ψ({F,H}) = φ({aF , aH}) for F < H.

Corollary
Let 〈ai : i ∈ ω〉 ∈ ω↑ω. For each �nite coloring of [ω]2, there is a proper

sumsequence 〈bi : i ∈ ω〉 of 〈ai : i ∈ ω〉 whose sum graph is

monochromatic. 2

Hindman's Theorem follows from Milliken-Taylor.

Proposition
Let S be a semigroup, 〈ai : i ∈ ω〉 ∈ Sω, and φ be a �nite coloring of S.
There is a �nite coloring ψ of [S]2 such that, for each proper

sumsequence 〈bi : i ∈ ω〉 of 〈ai : i ∈ ω〉 with ψ-monochromatic sum

graph, the set FS〈bi : i ∈ ω〉 is φ-monochromatic.

Proof.
Let ≺ be some wellorder of FS〈ai : i ∈ ω〉 with o.t. ω. Set
ψ({s, t}) := φ(min{s, t}). Let 〈bi : i ∈ ω〉 be a proper sumsequence of
〈ai : i ∈ ω〉 with ψ-monochromatic sum graph. Given F ∈ [ω]<ω, �nd
i > F such that bF ≺ bi. Then φ(bF ) = ψ({bF , bi}) is the ψ-colour of all
pairs in the sum graph of 〈bi : i ∈ ω〉 and hence does not depend on F . 2 6 / 17



Proof of Milliken-Taylor: auxiliary sta�

Let S be a semigroup. For A ⊂ S and F ⊂ P(S) let
A∗(F) := {b ∈ S : ∃C ∈ F(b+ C ⊂ A)}.
F is idempotent, if A∗(F) contains an element of F for any A ∈ F .
Example: Given 〈ai : i ∈ ω〉 ∈ Sω, F = {FS〈ai : i ≥ n〉 : n ∈ ω} is an
idempotent family.

Lemma
For any idempotent F ⊂ P(S) there exists an idempotent e ∈ βS
containing F .

Proof.
Enought to see: T := {p ∈ βS : F ⊂ p} is a closed subsemigroup of βS.
Closed is clear. Let p, q ∈ T and A ∈ F . Then A∗(F ) contains an
element of F ⊂ p, and hence is in p.
Since F ⊂ q, A∗(F) ⊂ A∗(q), and therefore A∗(q) ∈ p. This means
A ∈ p+ q. 2

Corollary
Let 〈ai : i ∈ ω〉 ∈ Sω be a proper sequence. Then thete exists a free

idempotent e ∈ βS containing {FS〈ai : i ≥ n〉 : n ∈ ω}.
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Theorem (Milliken 1975, Taylor 1976)

Let S be a semigroup, and 〈ai : i ∈ ω〉 ∈ Sω. If 〈ai : i ∈ ω〉 has a

proper sumsequence, then for each �nite coloring of [S]2, there is a

proper sumsequence of 〈ai : i ∈ ω〉 whose sum graph is

monochromatic.
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Proof of Milliken-Taylor

Let e ⊃ {FS〈ai : i ≥ n〉 : n ∈ ω} be idempotent. Wlog,

〈ai : i ∈ ω〉 is proper. Fix φ : [S]2 → k. For each s ∈ S �nd

i = is ∈ k such that

Ci(s) := {t ∈ S \ {s} : φ({s, t}) = i} ∈ e.
De�ne ψ : S → k by letting ψ(s) = is. Fix M ∈ e monochromatic

for ψ. Assume that the color is green. Then

G(F ) :=
⋂

s∈F {t ∈ S \ {s} : {s, t} is green} ∈ e for each

F ∈ [M ]<ω.

For D ∈ e let

D∗ := {b ∈ D : ∃B ∈ e(b+B ⊂ D)} = D∗(e) ∩D ∈ e.
Observation. Let 〈Dn, bn : n ∈ ω〉 be a sequence of pairs in

e× S such that bn ∈ D∗n, bn +Dn+1 ⊂ Dn, and Dn+1 ⊂ Dn.

Then bn0 + · · ·+ bnm ∈ Dn0 for any n0 < · · · < nm in ω. 2
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By induction on n ∈ ω, we'll construct increasing sequences

〈Fn : n ∈ ω〉 and 〈mn : n ∈ ω〉 of elements of [ω]<ω and ω,
respectively, and a decreasing sequence 〈Dn : i ∈ ω〉 of elements of

e as follows.

Set D0 =M , m0 = 0, and pick arbitrary ∅ 6= F0 ∈ [ω]<ω such that

aF0 ∈ D∗0. Possible because FS〈ai : i ∈ ω〉 ∈ e, so we have

�e-many� choices.

At stage n, using aFn−1 ∈ D∗n−1, pick B ∈ e such that

aFn−1 +B ⊂ Dn−1, pick mn > Fn−1, set

Dn = Dn−1 ∩B ∩G(FS{aFi : i ∈ n}), and pick arbitrary

∅ 6= Fn ∈ [ω \mn]
<ω such that aFn ∈ D∗n. Possible because

FS〈ai : i ≥ mn〉 ∈ e, so we have �e-many� choices.

By the construction, 〈bi = aFi : i ∈ ω〉 is a sumsequence of

〈ai : i ∈ ω〉.
Let i0 < · · · < in < j0 < · · · jl, F = {i0, . . . , in}, and
H = {j0, . . . , jl}. Computing bH from right to left, we see that

bH ∈ Dj0 ⊂ Din+1 ⊂ G(FS{b0, . . . , bin}) ⊂ G(bF ). 2
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Milliken-Taylor for topological spaces

Intermediate Theorem. Let (X, τ) be a topological space and

f : τ t [τ ]2 → k be a �nite coloring. Suppose that and U is a

point-in�nite open cover of X without �nite subcovers. Then there are

mutually disjoint �nite subsets F0,F1, . . . of U whose unions Vn :=
⋃
Fn

have the following properties:

I
⋃

n∈H0
Vn 6=

⋃
n∈H1

Vn for any �nite non-empty H0, H1 ⊂ ω such

that maxH0 < minH1;

I f({
⋃

n∈H0
Vn,
⋃

n∈H1
Vn}) is the same for any �nite non-empty

H0, H1 ⊂ ω such that maxH0 < minH1. 2

Proof. Let U = {Un : n ∈ ω} be an open cover of X without �nite
subcovers, S := FS〈Un : n ∈ ω〉 with respect to + := ∪. Wlog
〈Un : n ∈ ω〉 is proper: otherwise construct 〈kn : n ∈ ω〉 ∈ ω↑ω and
〈xn : n ∈ ω〉 ∈ Xω such that xn ∈

⋃
k∈[kn,kn+1)

Uk \
⋃

k∈kn
Uk and

replace Un with
⋃

k∈[kn,kn+1)
Uk. 2

Missing from the theorem we wanted to prove:

I f(
⋃

n∈H Vn) is the same for all �nite non-empty H ⊂ ω;
I {Vn : n ∈ ω} covers X.
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Combining the proof with a game

Given any G ⊂ P(S), consider the following game G(e,G): In the

nth move, I chooses En ∈ e (so En ⊂ S), and II responds by

choosing sn ∈ En. Player II wins if {sn : n ∈ ω} ∈ G. Otherwise,

player I wins.

Suppose that I has no winning strategy in this game. Then we can

additionally get in the previous proof that {bi = aFi : i ∈ ω}, the
proper sumsequence of the initial sequence of elements of S, lies in
G.
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By induction on n ∈ ω, we'll construct increasing sequences

〈Fn : n ∈ ω〉 and 〈mn : n ∈ ω〉 of elements of [ω]<ω and ω,
respectively, and a decreasing sequence 〈Dn : i ∈ ω〉 of elements of

e as follows.

Set D0 =M , m0 = 0, and pick arbitrary ∅ 6= F0 ∈ [ω]<ω such that

aF0 ∈ D∗0. Possible because FS〈ai : i ∈ ω〉 ∈ e, so we have

�e-many� choices.

At stage n, using aFn−1 ∈ D∗n−1, pick B ∈ e such that

aFn−1 +B ⊂ Dn−1, pick mn > Fn−1, set

Dn = Dn−1 ∩B ∩G(FS{aFi : i ∈ n}), and pick arbitrary

∅ 6= Fn ∈ [ω \mn]
<ω such that aFn ∈ D∗n. Possible because

FS〈ai : i ≥ mn〉 ∈ e, so we have �e-many� choices.

By the construction, 〈bi = aFi : i ∈ ω〉 is a sumsequence of

〈ai : i ∈ ω〉.
Let i0 < · · · < in < j0 < · · · jl, F = {i0, . . . , in}, and
H = {j0, . . . , jl}. Computing bH from right to left, we see that

bH ∈ Dj0 ⊂ Din+1 ⊂ G(FS{b0, . . . , bin}) ⊂ G(bF ). 2
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Milliken-Taylor for topological spaces

Let U = {Un : n ∈ ω} be an open cover of X without �nite

subcovers, S := FS〈Un : n ∈ ω〉 with respect to + := ∪. Wlog

〈Un : n ∈ ω〉 is proper. Assume also that X is Menger.

Goal: Construct an idempotent e ∈ βS containing{
FS〈Un : n ≥ m〉 : m ∈ ω

}
and consisting of open covers of X.

Then we can use the game G(e,G) where G equals O, the
collection of all open subcovers of U , to ensure that the resulting

sequence with monochromatic sumgraph covers X.
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Consider

Om = {O ⊂ S : O contains an increasing cover {On : n ∈ ω} of
X}. Om is a coideal. Thus F := O+

m is a �lter.

Lemma
F is idempotent.

Proof. To be checked: Given any F ∈ F, we have

F∗(F) :=
{
V ∈ S : ∃U ∈ F ({V ∪ U : U ∈ U} ⊂ F)

}
∈ F, i.e.,

F∗(F) ∩ O 6= ∅ for any O ∈ Om.

We'll show that F∗(F) ⊃ F . Indeed, for V ∈ F and O ∈ Om pick

WO,V ∈ F ∩
(
V0∪(O ∩ F)

)
and write it in the form

WO,V = V ∪ UO. for some UO ∈ O ∩ F . Then
U := {UO : O ∈ Om} ∈ F = O+

m witnesses V ∈ F∗(F). 2

15 / 17



Since
{
FS〈Un : n ≥ m〉 : m ∈ ω

}
and F = O+

m are idempotent, so

is their union (for a �xed A, A∗(F) grows with F), and hence

there exists an idempotent ultra�lter

e ⊃
{
FS〈Un : n ≥ m〉 : m ∈ ω

}⋃
F.

Thus e ⊃
{
FS〈Un : n ≥ m〉 : m ∈ ω

}
and e = e+ ⊂ Om, and

hence e consists of open covers of X. Our goal is achieved, which

completes the proof of Tsaban's theorem.
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The last slide

Thank you for your attention.
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