Hindman and Milliken-Taylor Theorems for topological spaces

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Hejnice, February 2, 2016

A result on colorings of open covers

A finite coloring of A is a function $f: A \rightarrow k$ for some $k \in \omega$. $B \subset A$ is monochromatic if there is $i \in k$ with $f(b)=i$ for all $b \in B$.

Theorem (Tsaban 2015)

Let (X, τ) be a topological space and $f: \tau \sqcup[\tau]^{2} \rightarrow k$ be a finite coloring. Suppose that X is Menger and \mathcal{U} is a point-infinite open cover of X without finite subcovers. Then there are mutually disjoint finite subsets $\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots$ of \mathcal{U} whose unions $V_{n}:=\bigcup \mathcal{F}_{n}$ have the following properties:

- $\bigcup_{n \in H_{0}} V_{n} \neq \bigcup_{n \in H_{1}} V_{n}$ for any finite non-empty $H_{0}, H_{1} \subset \omega$ such that max $H_{0}<\min H_{1}$;
- $f\left(\bigcup_{n \in H} V_{n}\right)$ is the same for all finite non-empty $H \subset \omega$;
- $f\left(\left\{\bigcup_{n \in H_{0}} V_{n}, \bigcup_{n \in H_{1}} V_{n}\right\}\right)$ is the same for any finite non-empty $H_{0}, H_{1} \subset \omega$ such that $\max H_{0}<\min H_{1}$;
- $\left\{V_{n}: n \in \omega\right\}$ covers X.

Hindman's Theorem

For a sequence $\left\langle a_{i}: i \in \omega\right\rangle$ in a semigroup S, and $F \in[S]^{<\omega} \backslash\{\emptyset\}$, $F=\left\{i_{0}, \ldots, i_{k}\right\} \subset \omega$ with $i_{0}<\cdots<i_{k}$, we set
$a_{F}:=a_{i_{1}}+\cdots+a_{i_{k}}$.
$F S\left\langle a_{i}: i \in \omega\right\rangle:=\left\{a_{F}: F \in[\omega]^{<\omega}, F \neq \emptyset\right\}$.
Theorem (Hindman 1974)
For each finite coloring of ω, there exists an increasing sequence $\left\langle a_{i}: i \in \omega\right\rangle$ of natural numbers such that the set $F S\left\langle a_{i}: i \in \omega\right\rangle$ is monochromatic.

Given $p, q \in \beta S$, we let $A \in p+q$ iff $\{b \in S: \exists C \in q(b+C \subset A)\} \in p$.
$p+q \in \beta S$. This extends the addition from S to βS, with the following continuity properties:

1. For every $x \in S$, the function $q \mapsto x+q$ is continuous;
2. For every $q \in \beta S$, the function $p \mapsto p+q$ is continuous.

Fact. Any compact semigroup T satisfying item 2 above has an idempotent element.
Proof. Zorn's Lemma provides us with a minimal closed subsemigroup E of T, and minimality yields $E=\{e\}$ for some idempotent $e \in T$. Indeed, fix $e \in E$. As $E+e$ is a closed subsemigroup of E, we have $E+e=E$. Thus
$T:=\{t \in E: t+e=e\}$ is a closed nonempty subsemigroup of E, and hence $T=E$. So $e+e=e$.

Proof of Hindman's Theorem by Galvin and Glazer.

Fix an idempotent element $e \in \beta \omega$. Let f be a k-coloring of ω.
Pick $i \in k$ with $A_{0}:=f^{-1}(i) \in e$ and set $a_{-1}=0$.
By induction on $n \in \omega$, pick $a_{n}>a_{n-1}, a_{n} \in A_{n}$, and $A_{n+1} \subset A_{n}$ in e such that $a_{n}+A_{n+1} \subset A_{n}$. Considering the sums from right to left, we get that all sums $a_{i_{0}}+\cdots+a_{i_{m}}$ lie in $A_{i_{0}} \subset A_{0}$, where $i_{0}<\ldots<i_{m}$. Thus $F S\left\langle a_{i}: i \in \omega\right\rangle$ is monochromatic.

The Milliken-Taylor Theorem

For $F, H \in[\omega]^{<\omega} \backslash\{\emptyset\}, F<H$ means $\max F<\min H$.
A sumsequence of $\left\langle a_{i}: i \in \omega\right\rangle \in S^{\omega}$ is a sequence $\left\langle a_{F_{i}}: i \in \omega\right\rangle$, where $F_{i} \subset \omega$ are nonempty finite and $F_{i}<F_{i+1}$ for all i. The relation of being a sumsequence is transitive.
$\left\langle b_{i}: i \in \omega\right\rangle \in S^{\omega}$ is proper if $b_{F} \neq b_{H}$ for all $F<H$ in $[\omega]^{<\omega} \backslash \emptyset$.
The sum graph of a proper sequence $\left\langle b_{i}: i \in \omega\right\rangle \in S^{\omega}$ is $\left\{\left\{b_{F}, b_{H}\right\}: F<H, F, H \in[\omega]^{<\omega} \backslash \emptyset\right\} \subset\left[F S\left\langle b_{i}: i \in \omega\right\rangle\right]^{2}$.
For a set X we consider $[X]^{<\omega}$ with the operation \cup which turns it into a semigroup.
Theorem (Milliken 1975, Taylor 1976)

1. For each finite coloring of the set $\left[[\omega]^{<\omega}\right]^{2}$, there are elements $F_{0}<F_{1}<\cdots$ in $[\omega]^{<\omega}$ such that the sum graph of F_{0}, F_{1}, \ldots is monochromatic.
2. Let S be a semigroup, and $\left\langle a_{i}: i \in \omega\right\rangle \in S^{\omega}$. If $\left\langle a_{i}: i \in \omega\right\rangle$ has a proper sumsequence, then for each finite coloring of $[S]^{2}$, there is a proper sumsequence of $\left\langle a_{i}: i \in \omega\right\rangle$ whose sum graph is monochromatic.

Item (2) is formally more general than item (1): $\{0\},\{1\},\{2\}$, is proper in $[\omega]^{<\omega}$.
Item (2) also follows from item (1): Wlog, $\left\langle a_{i}: i \in \omega\right\rangle$ is proper. Let
$\phi:[S]^{2} \rightarrow k$. Define $\psi\left[[\omega]^{<\omega}\right]^{2} \rightarrow k$ by letting
$\psi(\{F, H\})=\phi\left(\left\{a_{F}, a_{H}\right\}\right)$ for $F<H$.
Corollary
Let $\left\langle a_{i}: i \in \omega\right\rangle \in \omega^{\uparrow \omega}$. For each finite coloring of $[\omega]^{2}$, there is a proper sumsequence $\left\langle b_{i}: i \in \omega\right\rangle$ of $\left\langle a_{i}: i \in \omega\right\rangle$ whose sum graph is monochromatic.

Hindman's Theorem follows from Milliken-Taylor.

Proposition

Let S be a semigroup, $\left\langle a_{i}: i \in \omega\right\rangle \in S^{\omega}$, and ϕ be a finite coloring of S. There is a finite coloring ψ of $[S]^{2}$ such that, for each proper sumsequence $\left\langle b_{i}: i \in \omega\right\rangle$ of $\left\langle a_{i}: i \in \omega\right\rangle$ with ψ-monochromatic sum graph, the set $F S\left\langle b_{i}: i \in \omega\right\rangle$ is ϕ-monochromatic.
Proof.
Let \prec be some wellorder of $F S\left\langle a_{i}: i \in \omega\right\rangle$ with o.t. ω. Set $\psi(\{s, t\}):=\phi(\min \{s, t\})$. Let $\left\langle b_{i}: i \in \omega\right\rangle$ be a proper sumsequence of $\left\langle a_{i}: i \in \omega\right\rangle$ with ψ-monochromatic sum graph. Given $F \in[\omega]^{<\omega}$, find $i>F$ such that $b_{F} \prec b_{i}$. Then $\phi\left(b_{F}\right)=\psi\left(\left\{b_{F}, b_{i}\right\}\right)$ is the ψ-colour of all pairs in the sum graph of $\left\langle b_{i}: i \in \omega\right\rangle$ and hence does not depend on F. $\square / 17$

Proof of Milliken-Taylor: auxiliary staff

Let S be a semigroup. For $A \subset S$ and $\mathcal{F} \subset \mathcal{P}(S)$ let $A^{*}(\mathcal{F}):=\{b \in S: \exists C \in \mathcal{F}(b+C \subset A)\}$.
\mathcal{F} is idempotent, if $A^{*}(\mathcal{F})$ contains an element of \mathcal{F} for any $A \in \mathcal{F}$.
Example: Given $\left\langle a_{i}: i \in \omega\right\rangle \in S^{\omega}, \mathcal{F}=\left\{F S\left\langle a_{i}: i \geq n\right\rangle: n \in \omega\right\}$ is an idempotent family.

Lemma

For any idempotent $\mathcal{F} \subset \mathcal{P}(S)$ there exists an idempotent $e \in \beta S$ containing \mathcal{F}.

Proof.

Enought to see: $T:=\{p \in \beta S: \mathcal{F} \subset p\}$ is a closed subsemigroup of βS.
Closed is clear. Let $p, q \in T$ and $A \in \mathcal{F}$. Then $A^{*}(F)$ contains an element of $\mathcal{F} \subset p$, and hence is in p.
Since $\mathcal{F} \subset q, A^{*}(\mathcal{F}) \subset A^{*}(q)$, and therefore $A^{*}(q) \in p$. This means $A \in p+q$.

Corollary

Let $\left\langle a_{i}: i \in \omega\right\rangle \in S^{\omega}$ be a proper sequence. Then thete exists a free idempotent $e \in \beta S$ containing $\left\{F S\left\langle a_{i}: i \geq n\right\rangle: n \in \omega\right\}$.

Theorem (Milliken 1975, Taylor 1976)
Let S be a semigroup, and $\left\langle a_{i}: i \in \omega\right\rangle \in S^{\omega}$. If $\left\langle a_{i}: i \in \omega\right\rangle$ has a proper sumsequence, then for each finite coloring of $[S]^{2}$, there is a proper sumsequence of $\left\langle a_{i}: i \in \omega\right\rangle$ whose sum graph is monochromatic.

Proof of Milliken-Taylor

Let $e \supset\left\{F S\left\langle a_{i}: i \geq n\right\rangle: n \in \omega\right\}$ be idempotent. Wlog,
$\left\langle a_{i}: i \in \omega\right\rangle$ is proper. Fix $\phi:[S]^{2} \rightarrow k$. For each $s \in S$ find $i=i_{s} \in k$ such that
$C_{i}(s):=\{t \in S \backslash\{s\}: \phi(\{s, t\})=i\} \in e$.
Define $\psi: S \rightarrow k$ by letting $\psi(s)=i_{s}$. Fix $M \in e$ monochromatic for ψ. Assume that the color is green. Then
$G(F):=\bigcap_{s \in F}\{t \in S \backslash\{s\}:\{s, t\}$ is green $\} \in e$ for each $F \in[M]^{<\omega}$.
For $D \in e$ let
$D^{*}:=\{b \in D: \exists B \in e(b+B \subset D)\}=D^{*}(e) \cap D \in e$.
Observation. Let $\left\langle D_{n}, b_{n}: n \in \omega\right\rangle$ be a sequence of pairs in $e \times S$ such that $b_{n} \in D_{n}^{*}, b_{n}+D_{n+1} \subset D_{n}$, and $D_{n+1} \subset D_{n}$.
Then $b_{n_{0}}+\cdots+b_{n_{m}} \in D_{n_{0}}$ for any $n_{0}<\cdots<n_{m}$ in ω.

By induction on $n \in \omega$, we'll construct increasing sequences $\left\langle F_{n}: n \in \omega\right\rangle$ and $\left\langle m_{n}: n \in \omega\right\rangle$ of elements of $[\omega]^{<\omega}$ and ω, respectively, and a decreasing sequence $\left\langle D_{n}: i \in \omega\right\rangle$ of elements of e as follows.
Set $D_{0}=M, m_{0}=0$, and pick arbitrary $\emptyset \neq F_{0} \in[\omega]^{<\omega}$ such that $a_{F_{0}} \in D_{0}^{*}$. Possible because $F S\left\langle a_{i}: i \in \omega\right\rangle \in e$, so we have "e-many" choices.
At stage n, using $a_{F_{n-1}} \in D_{n-1}^{*}$, pick $B \in e$ such that $a_{F_{n-1}}+B \subset D_{n-1}$, pick $m_{n}>F_{n-1}$, set
$D_{n}=D_{n-1} \cap B \cap G\left(F S\left\{a_{F_{i}}: i \in n\right\}\right)$, and pick arbitrary $\emptyset \neq F_{n} \in\left[\omega \backslash m_{n}\right]^{<\omega}$ such that $a_{F_{n}} \in D_{n}^{*}$. Possible because $F S\left\langle a_{i}: i \geq m_{n}\right\rangle \in e$, so we have " e-many" choices.
By the construction, $\left\langle b_{i}=a_{F_{i}}: i \in \omega\right\rangle$ is a sumsequence of $\left\langle a_{i}: i \in \omega\right\rangle$.
Let $i_{0}<\cdots<i_{n}<j_{0}<\cdots j_{l}, F=\left\{i_{0}, \ldots, i_{n}\right\}$, and
$H=\left\{j_{0}, \ldots, j_{l}\right\}$. Computing b_{H} from right to left, we see that
$b_{H} \in D_{j_{0}} \subset D_{i_{n}+1} \subset G\left(F S\left\{b_{0}, \ldots, b_{i_{n}}\right\}\right) \subset G\left(b_{F}\right)$.

Milliken-Taylor for topological spaces

Intermediate Theorem. Let (X, τ) be a topological space and $f: \tau \sqcup[\tau]^{2} \rightarrow k$ be a finite coloring. Suppose that and \mathcal{U} is a point-infinite open cover of X without finite subcovers. Then there are mutually disjoint finite subsets $\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots$ of \mathcal{U} whose unions $V_{n}:=\bigcup \mathcal{F}_{n}$ have the following properties:

- $\bigcup_{n \in H_{0}} V_{n} \neq \bigcup_{n \in H_{1}} V_{n}$ for any finite non-empty $H_{0}, H_{1} \subset \omega$ such that max $H_{0}<\min H_{1}$;
- $f\left(\left\{\bigcup_{n \in H_{0}} V_{n}, \bigcup_{n \in H_{1}} V_{n}\right\}\right)$ is the same for any finite non-empty $H_{0}, H_{1} \subset \omega$ such that max $H_{0}<\min H_{1}$.
Proof. Let $\mathcal{U}=\left\{U_{n}: n \in \omega\right\}$ be an open cover of X without finite subcovers, $S:=F S\left\langle U_{n}: n \in \omega\right\rangle$ with respect to $+:=U$. Wlog $\left\langle U_{n}: n \in \omega\right\rangle$ is proper: otherwise construct $\left\langle k_{n}: n \in \omega\right\rangle \in \omega^{\dagger \omega}$ and $\left\langle x_{n}: n \in \omega\right\rangle \in X^{\omega}$ such that $x_{n} \in \bigcup_{k \in\left[k_{n}, k_{n+1}\right)} U_{k} \backslash \bigcup_{k \in k_{n}} U_{k}$ and replace U_{n} with $\bigcup_{k \in\left[k_{n}, k_{n+1}\right)} U_{k}$.
Missing from the theorem we wanted to prove:
- $f\left(\bigcup_{n \in H} V_{n}\right)$ is the same for all finite non-empty $H \subset \omega$;
- $\left\{V_{n}: n \in \omega\right\}$ covers X.

Combining the proof with a game

Given any $\mathcal{G} \subset \mathcal{P}(S)$, consider the following game $G(e, \mathcal{G})$: In the nth move, I chooses $E_{n} \in e$ (so $E_{n} \subset S$), and II responds by choosing $s_{n} \in E_{n}$. Player II wins if $\left\{s_{n}: n \in \omega\right\} \in \mathcal{G}$. Otherwise, player I wins.

Suppose that I has no winning strategy in this game. Then we can additionally get in the previous proof that $\left\{b_{i}=a_{F_{i}}: i \in \omega\right\}$, the proper sumsequence of the initial sequence of elements of S, lies in \mathcal{G}.

By induction on $n \in \omega$, we'll construct increasing sequences $\left\langle F_{n}: n \in \omega\right\rangle$ and $\left\langle m_{n}: n \in \omega\right\rangle$ of elements of $[\omega]^{<\omega}$ and ω, respectively, and a decreasing sequence $\left\langle D_{n}: i \in \omega\right\rangle$ of elements of e as follows.
Set $D_{0}=M, m_{0}=0$, and pick arbitrary $\emptyset \neq F_{0} \in[\omega]^{<\omega}$ such that $a_{F_{0}} \in D_{0}^{*}$. Possible because $F S\left\langle a_{i}: i \in \omega\right\rangle \in e$, so we have "e-many" choices.
At stage n, using $a_{F_{n-1}} \in D_{n-1}^{*}$, pick $B \in e$ such that $a_{F_{n-1}}+B \subset D_{n-1}$, pick $m_{n}>F_{n-1}$, set
$D_{n}=D_{n-1} \cap B \cap G\left(F S\left\{a_{F_{i}}: i \in n\right\}\right)$, and pick arbitrary $\emptyset \neq F_{n} \in\left[\omega \backslash m_{n}\right]^{<\omega}$ such that $a_{F_{n}} \in D_{n}^{*}$. Possible because $F S\left\langle a_{i}: i \geq m_{n}\right\rangle \in e$, so we have " e-many" choices.
By the construction, $\left\langle b_{i}=a_{F_{i}}: i \in \omega\right\rangle$ is a sumsequence of $\left\langle a_{i}: i \in \omega\right\rangle$.
Let $i_{0}<\cdots<i_{n}<j_{0}<\cdots j_{l}, F=\left\{i_{0}, \ldots, i_{n}\right\}$, and
$H=\left\{j_{0}, \ldots, j_{l}\right\}$. Computing b_{H} from right to left, we see that
$b_{H} \in D_{j_{0}} \subset D_{i_{n}+1} \subset G\left(F S\left\{b_{0}, \ldots, b_{i_{n}}\right\}\right) \subset G\left(b_{F}\right)$.

Milliken-Taylor for topological spaces

Let $\mathcal{U}=\left\{U_{n}: n \in \omega\right\}$ be an open cover of X without finite subcovers, $S:=F S\left\langle U_{n}: n \in \omega\right\rangle$ with respect to $+:=\cup$. Wlog $\left\langle U_{n}: n \in \omega\right\rangle$ is proper. Assume also that X is Menger.

Goal: Construct an idempotent $e \in \beta S$ containing $\left\{F S\left\langle U_{n}: n \geq m\right\rangle: m \in \omega\right\}$ and consisting of open covers of X.
Then we can use the game $G(e, \mathcal{G})$ where \mathcal{G} equals O , the collection of all open subcovers of \mathcal{U}, to ensure that the resulting sequence with monochromatic sumgraph covers X.

Consider
$\mathrm{O}_{m}=\left\{\mathcal{O} \subset S: \mathcal{O}\right.$ contains an increasing cover $\left\{O_{n}: n \in \omega\right\}$ of $X\} . \mathrm{O}_{m}$ is a coideal. Thus $\mathrm{F}:=\mathrm{O}_{m}^{+}$is a filter.
Lemma
F is idempotent.
Proof. To be checked: Given any $\mathcal{F} \in \mathrm{F}$, we have
$\mathcal{F}^{*}(\mathrm{~F}):=\{V \in S: \exists \mathcal{U} \in \mathrm{F}(\{V \cup U: U \in \mathcal{U}\} \subset \mathcal{F})\} \in \mathrm{F}$, i.e.,
$\mathcal{F}^{*}(\mathrm{~F}) \cap \mathcal{O} \neq \emptyset$ for any $\mathcal{O} \in \mathrm{O}_{m}$.
We'll show that $\mathcal{F}^{*}(\mathrm{~F}) \supset \mathcal{F}$. Indeed, for $V \in \mathcal{F}$ and $\mathcal{O} \in \mathrm{O}_{m}$ pick
$W_{\mathcal{O}, V} \in \mathcal{F} \cap\left(V_{0} \cup(\mathcal{O} \cap \mathcal{F})\right)$ and write it in the form
$W_{\mathcal{O}, V}=V \cup U_{\mathcal{O}}$. for some $U_{\mathcal{O}} \in \mathcal{O} \cap \mathcal{F}$. Then
$\mathcal{U}:=\left\{U_{\mathcal{O}}: \mathcal{O} \in \mathrm{O}_{m}\right\} \in \mathrm{F}=\mathrm{O}_{m}^{+}$witnesses $V \in \mathcal{F}^{*}(\mathrm{~F})$.

Since $\left\{F S\left\langle U_{n}: n \geq m\right\rangle: m \in \omega\right\}$ and $\mathrm{F}=\mathrm{O}_{m}^{+}$are idempotent, so is their union (for a fixed $A, A^{*}(\mathcal{F})$ grows with \mathcal{F}), and hence there exists an idempotent ultrafilter $e \supset\left\{F S\left\langle U_{n}: n \geq m\right\rangle: m \in \omega\right\} \bigcup \mathrm{F}$.
Thus $e \supset\left\{F S\left\langle U_{n}: n \geq m\right\rangle: m \in \omega\right\}$ and $e=e^{+} \subset \mathrm{O}_{m}$, and hence e consists of open covers of X. Our goal is achieved, which completes the proof of Tsaban's theorem.

The last slide

Thank you for your attention.

